direct product, metabelian, supersoluble, monomial
Aliases: C2×C32⋊C12, C62.2C6, C62.1S3, (C3×C6)⋊C12, He3⋊6(C2×C4), C6.17(S3×C6), (C2×He3)⋊2C4, C3⋊Dic3⋊3C6, (C3×C6)⋊1Dic3, (C3×C6).12D6, C32⋊2(C2×C12), C3.2(C6×Dic3), C6.5(C3×Dic3), C22.(C32⋊C6), C32⋊2(C2×Dic3), (C22×He3).1C2, (C2×He3).9C22, (C2×C3⋊Dic3)⋊C3, (C3×C6).4(C2×C6), (C2×C6).12(C3×S3), C2.2(C2×C32⋊C6), SmallGroup(216,59)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C2×C32⋊C12 |
Generators and relations for C2×C32⋊C12
G = < a,b,c,d | a2=b3=c3=d12=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c, dcd-1=c-1 >
Subgroups: 200 in 66 conjugacy classes, 31 normal (17 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2×C4, C32, C32, Dic3, C12, C2×C6, C2×C6, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×C12, He3, C3×Dic3, C3⋊Dic3, C62, C62, C2×He3, C2×He3, C6×Dic3, C2×C3⋊Dic3, C32⋊C12, C22×He3, C2×C32⋊C12
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, Dic3, C12, D6, C2×C6, C3×S3, C2×Dic3, C2×C12, C3×Dic3, S3×C6, C32⋊C6, C6×Dic3, C32⋊C12, C2×C32⋊C6, C2×C32⋊C12
(1 62)(2 63)(3 64)(4 65)(5 66)(6 67)(7 68)(8 69)(9 70)(10 71)(11 72)(12 61)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 37)(23 38)(24 39)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)(31 49)(32 50)(33 51)(34 52)(35 53)(36 54)
(1 42 38)(2 6 50)(3 11 59)(4 41 45)(5 53 9)(7 48 44)(8 12 56)(10 47 39)(13 25 33)(14 18 65)(15 23 62)(16 36 28)(17 68 21)(19 31 27)(20 24 71)(22 30 34)(26 69 61)(29 64 72)(32 63 67)(35 70 66)(37 60 52)(40 55 51)(43 54 58)(46 49 57)
(1 53 46)(2 47 54)(3 55 48)(4 37 56)(5 57 38)(6 39 58)(7 59 40)(8 41 60)(9 49 42)(10 43 50)(11 51 44)(12 45 52)(13 68 29)(14 30 69)(15 70 31)(16 32 71)(17 72 33)(18 34 61)(19 62 35)(20 36 63)(21 64 25)(22 26 65)(23 66 27)(24 28 67)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,61)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,37)(23,38)(24,39)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,49)(32,50)(33,51)(34,52)(35,53)(36,54), (1,42,38)(2,6,50)(3,11,59)(4,41,45)(5,53,9)(7,48,44)(8,12,56)(10,47,39)(13,25,33)(14,18,65)(15,23,62)(16,36,28)(17,68,21)(19,31,27)(20,24,71)(22,30,34)(26,69,61)(29,64,72)(32,63,67)(35,70,66)(37,60,52)(40,55,51)(43,54,58)(46,49,57), (1,53,46)(2,47,54)(3,55,48)(4,37,56)(5,57,38)(6,39,58)(7,59,40)(8,41,60)(9,49,42)(10,43,50)(11,51,44)(12,45,52)(13,68,29)(14,30,69)(15,70,31)(16,32,71)(17,72,33)(18,34,61)(19,62,35)(20,36,63)(21,64,25)(22,26,65)(23,66,27)(24,28,67), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)>;
G:=Group( (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,61)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,37)(23,38)(24,39)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,49)(32,50)(33,51)(34,52)(35,53)(36,54), (1,42,38)(2,6,50)(3,11,59)(4,41,45)(5,53,9)(7,48,44)(8,12,56)(10,47,39)(13,25,33)(14,18,65)(15,23,62)(16,36,28)(17,68,21)(19,31,27)(20,24,71)(22,30,34)(26,69,61)(29,64,72)(32,63,67)(35,70,66)(37,60,52)(40,55,51)(43,54,58)(46,49,57), (1,53,46)(2,47,54)(3,55,48)(4,37,56)(5,57,38)(6,39,58)(7,59,40)(8,41,60)(9,49,42)(10,43,50)(11,51,44)(12,45,52)(13,68,29)(14,30,69)(15,70,31)(16,32,71)(17,72,33)(18,34,61)(19,62,35)(20,36,63)(21,64,25)(22,26,65)(23,66,27)(24,28,67), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,62),(2,63),(3,64),(4,65),(5,66),(6,67),(7,68),(8,69),(9,70),(10,71),(11,72),(12,61),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,37),(23,38),(24,39),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60),(31,49),(32,50),(33,51),(34,52),(35,53),(36,54)], [(1,42,38),(2,6,50),(3,11,59),(4,41,45),(5,53,9),(7,48,44),(8,12,56),(10,47,39),(13,25,33),(14,18,65),(15,23,62),(16,36,28),(17,68,21),(19,31,27),(20,24,71),(22,30,34),(26,69,61),(29,64,72),(32,63,67),(35,70,66),(37,60,52),(40,55,51),(43,54,58),(46,49,57)], [(1,53,46),(2,47,54),(3,55,48),(4,37,56),(5,57,38),(6,39,58),(7,59,40),(8,41,60),(9,49,42),(10,43,50),(11,51,44),(12,45,52),(13,68,29),(14,30,69),(15,70,31),(16,32,71),(17,72,33),(18,34,61),(19,62,35),(20,36,63),(21,64,25),(22,26,65),(23,66,27),(24,28,67)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)]])
C2×C32⋊C12 is a maximal subgroup of
He3⋊C42 C62.D6 C62.3D6 C62.4D6 C62.5D6 C62.19D6 C62.20D6 C62.21D6 C62⋊3C12 C62.8D6 C2×C4×C32⋊C6 C62.13D6
C2×C32⋊C12 is a maximal quotient of
He3⋊7M4(2) C62.20D6 C62⋊3C12
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | ··· | 6I | 6J | ··· | 6R | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 |
type | + | + | + | + | - | + | + | - | + | ||||||||
image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 | S3 | Dic3 | D6 | C3×S3 | C3×Dic3 | S3×C6 | C32⋊C6 | C32⋊C12 | C2×C32⋊C6 |
kernel | C2×C32⋊C12 | C32⋊C12 | C22×He3 | C2×C3⋊Dic3 | C2×He3 | C3⋊Dic3 | C62 | C3×C6 | C62 | C3×C6 | C3×C6 | C2×C6 | C6 | C6 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 2 | 4 | 4 | 2 | 8 | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 2 | 1 |
Matrix representation of C2×C32⋊C12 ►in GL10(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 2 | 1 |
0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 | 9 | 9 |
0 | 0 | 0 | 0 | 10 | 10 | 1 | 0 | 9 | 9 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 12 | 12 |
0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 6 | 6 | 3 | 6 | 3 |
0 | 0 | 0 | 0 | 0 | 3 | 3 | 10 | 3 | 10 |
0 | 0 | 0 | 0 | 4 | 10 | 12 | 3 | 9 | 10 |
0 | 0 | 0 | 0 | 10 | 9 | 9 | 10 | 6 | 0 |
0 | 0 | 0 | 0 | 10 | 1 | 11 | 0 | 1 | 10 |
0 | 0 | 0 | 0 | 4 | 5 | 4 | 3 | 11 | 0 |
G:=sub<GL(10,GF(13))| [12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[9,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,4,4,12,12,0,10,0,0,0,0,4,4,0,12,0,10,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,2,1,3,3,9,9,0,0,0,0,1,2,3,3,9,9],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,12,10,0,4,0,0,0,0,0,1,0,0,3,0,9,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12],[0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,4,10,10,4,0,0,0,0,6,3,10,9,1,5,0,0,0,0,6,3,12,9,11,4,0,0,0,0,3,10,3,10,0,3,0,0,0,0,6,3,9,6,1,11,0,0,0,0,3,10,10,0,10,0] >;
C2×C32⋊C12 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes C_{12}
% in TeX
G:=Group("C2xC3^2:C12");
// GroupNames label
G:=SmallGroup(216,59);
// by ID
G=gap.SmallGroup(216,59);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,1444,736,5189]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^3=d^12=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c,d*c*d^-1=c^-1>;
// generators/relations